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Outline

Introduction to scanning tunneling microscopy (STM)

An example of STM applications — study of H/Si(001)

Other STM applications — current research interest



Invention of STM

G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982).
(IBM Zurich)



One Dimensional Square Barrier — Tunneling Effect
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Take U-E as the work function @, then the characteristic length 1/k ~ 0.1nm
Qualitatively tunneling current extremely sensitive on barrier width

Atomic resolution: lateral ~ 0.1nm, vertical ~ 0.01nm



Quantitative Description — Modified Bardeen’s method

See the tunneling process as transition between states, follows
Fermi’s Golden Rule:
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In the limit of small bias voltage and low temperature :
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Assuming spherical tip and s wave function of tip:
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J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).
J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1995).



STM Instrumentation and Operation

Vibration isolation:  spring, air leg, Eddie current...
Current amplifier

Electrical noise reduction

Accurate positioning: piezoelectric drive ~0.1nm/V

Feedback loop
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Piezoelectric tube

Control voltages for piezotube
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STM Applications

Surface structure: semiconductor, metal, layered material...

Nucleation and growth

Adsorbate on surface: inorganic, organic

Scanning tunneling spectroscopy: LDOS and electronic structure

STM variations: SPSTM, STM-IETS, AFM...

Atom manipulation and surface modification



Motivations to study H/Si(001)

— H/S1(001):  Growth of Si from SiH, or similar compounds
Prototype for adsorbate/semiconductor interactions

— STM as a powerful tool not only for structure but also for dynamics

1. Adsorbate-adsorbate interactions for H/Si(001)

2. Adsorbate-surface interaction dynamics



S1(001) surface reconstruction

truncated
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S1(001) 2x1 dimer row structure

10 nm x 10 nm, -2V, 0.6 nA

Each DB can be occupied
by 1 H atom




S1(001) surface after atomic H adsorption at RT
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Changes in geometric and electronic
structures upon adsorption of hydrogen

Clean dimer: Singly-occupied dimer: Doubly-occupied dimer:
asymmetric, with Tt bond  symmetric, T bond broken symmetric, 7 bond broken

AoM W

TC state

Squasifree

DB states
— @ — - state

Si -H bond states
i) —)—



Unusual behavior of H, - Si(001) interaction

adsorption H2

QQ barrier %
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1. Strong surface temperature dependence of H, sticking probability

2. Near-first-order Kinetics of recombinative desorption
R, =-d06/dt = k6 (NOT k6%*) ©O0—H coverage
H+H->H,(g)T



Relevant surface configurations and interactions

unoccupied singly occupied doubly occupied cluster
v v v v

“Prepairing” mechanism can explain 1st-order Kinetics naturally

Interaction strength closely related to intradimer or interdimer

¢ Direct counting of different surface configurations using STM

e Application of statistical mechanics to infer interaction energies



Desorption pathways in controversy

Prevalent model

— intra-dimer path .
Alternative model

— inter-dimer path



Experimental

e Apparatus:
— UHV STM, base vacuum pressure < 7x10-!! torr
— Tungsten tips made by electrochemical etching

— n-type silicon ( 10 O/cm ), surface oriented to within 0.5°

e Procedure:
— Dose surface with atomic H ( 0.04 <0 <0.65)
— Anneal surface to reach equilibrium distribution

— STM at RT



Experimental set-up

UHYV with capabilities of STM, TPD, AES, optical techniques
and molecular beam techniques

UHYV STM, base vacuum pressure < 7x10-!! torr



H distribution after annealing to 640 K

A — clean dimers

B — singly occupied

C — doubly occupied

D — cluster of
doubly occupied

dimers




S1(001) surface after atomic H adsorption at RT
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Counting results of H configurations

fraction of hydrogen in clusters
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without

/ interaction

cluster size

e Most H in doubly occupied
dimers

e Cluster size distribution is
not statistical

— Intradimer and interdimer
interactions do exist



Qualitative analysis

Fraction of doubly occupied dimers
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Pairing and clustering interactions

A nearest-neighbor-interaction model
Analytical fitting to 0, 0,, 0,, (quasi-1D Ising Model)

Correlation function calculation

®» Monte Carlo simulation of cluster size distribution



Monte Carlo simulation
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Monte Carlo Method: Important issues in programming :
e Random tentative hops e Possible configurations (branches)
e Hopping probability e Boundary effects

p=e?t/XI (AE20) e Testing convergence (equilibrium)

p=1 (AE<0) ~ 10 tentative hops per site



fraction of H in each cluster size

Comparison of MC simulation results and experimental data
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e =0.28£0.03 eV
® =0.04 £ 0.01 eV




Summary
Intradimer and interdimer interactions of H on Si(001)

Experiment and analysis
e Direct counting of H configurations in STM images to obtain 0, 0,, 0,,
e Most H in doubly occupied dimers. Some Clusters

e Analytical fitting. Correlation function. Monte Carlo simulation

Results and implications:
e Obtained energies in a way independent of any pathway assumptions
pairing (€ =0.28 £ 0.03 ¢V ) >> clustering (® = 0.04 £ 0.01 eV )
¢ Driving force: 7 bonds

¢ A simple “interdimer prepairing” mechanism cannot explain the kinetics



Relevant surface configurations and interactions
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Driving force for pairing and clustering: recovery of = bond



Desorption/adsorption pathways in controversy

Alternative model
inter-dimer path

Prevalent model
— intra-dimer path

Previously only theoretical calculations, no direct experimental evidence



Strong dependence of surface temperature
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At RT, extremely low:
S, <10-12

Strong dependence on

surface temperature:

-0.75eV/KT
S0~001 C p s

— phonon-assisted mechanism



Experimental

¢ Procedure:
Dosing of H, at the T, ~500K
Take STM images at RT
AES, TPD to confirm adsorbed species

— Impurities: clean surface (defect density <0.6%) before dosing

e Special issues:

— High-purity H, via a LN, cooling trap to reduce H,O
— All filaments turned off during and after dosing
— T, < 500K to avoid H diffusion



STM image of H,adsorption on clean Si(001) at 450K

After exposure of
10 ® Langmuir H,
at 450K

Adsorbates in
quartet
configuration

Filled-state image
surface bias ~-2V

current ~ 0.5nA




TPD confirmation of adsorbed species

filled-state images taken at ~ 0.5 nA, -2V sample bias

20 nm x 20 nm

30 nm x 30 nm 30 nm x 30 nm
o -

clean Si(001) before ads. ads. to ~1ML under same after TPD to 780K
defect/contamination dosing condition defect/contamination ~ 0.8%
~0.6%



Enhanced H, adsorption at specific sites on H/Si(001)

Active site  Isolated dangling bond




STM images showing H, adsorption on Dg step sites

Enhanced sticking
coefficient on Dy
step sites over flat
terrace:

S, ~4x10




Adsorption pathway

incident First inter-dimer- 2nd step: assisted
H, adsorbed H, sticking, S, ~ 103 X

gf;ive Ig‘ Second inter-dimer-
adsorbed H,

>

1st step: T-dep. S,



Considerations about nozzle temperature

Translational Energy Eggns (MeV)

area having a chance

< 1600K to avoid H

adsorption

— Optimal exposure so that
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Initial sticking configuration of H, on clean Si(001)

H, exposure: ~800 L H,
T,~400 K, T, ~1300 K

1H configuration ~ 1% of total sites
® O O

N

\ « { 4H configuration ~ 1.5%
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) x::§ 2H interdimer configuration ~ 3%

=2.6% + 0.4% defects/contamination

— 2H intradimer configuration ~ 0.5%

=0.3% + 0.2% defects/contamination



Outrunning diffusion
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At 1500 K, desorption rate and diffusion rate comparable, ~ 107 s !

—mneed T flash to 1500 K for several ns — LITD to see initial desorption sites



Surface before and after pulse
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Direct counting and quantitative evaluation results
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additional after pulse (® =3.0% )

¢ inter-dimer vacancy pairs more than intra-dimer pairs

e inter-dimer vacancy pairs 8 times higher than statistical value

— inter-dimer desorption pathway exsists



Conclusions
Dynamics of interaction between H, and Si(001) surface

e Enhanced sticking probabilities up to 10 orders of magnitude higher on
specific sites ( STM, TPD, SHG)

¢ Interdimer pathway of H, adsorption preferred over intradimer pathway
(STM, MB)

e Evidence for interdimer desorption pathway observed (STM, LITD)

— Studies of adsorption indicate strong coupling with surface phonons in the

interdimer pathway, better explains the strong dependence on T

surface



A promising technique for nano-fabrication

dangling
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Si(100)2 x 1 : H surface with STM depassivated pattern of letters “M” and “D”
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